What is a Data Diode & How Do Data Diodes Work?

What is a Data Diode & How Do Data Diodes Work?


What is a Data Diode & How Do Data Diodes Work?

Today’s business environment is increasingly digital, and more vulnerable than ever to cyberattack. Because of this, various network security technologies have been developed to protect organizational data and infrastructures. One of the most effective of these modern technologies is the data diode. Although it is one of the most effective network security tools available, you may not have heard of this technology and know little of what it does. Below, you’ll find a description of what data diode technology is and how it works.

What Is Data Diode Technology?

A data diode is a unidirectional network communication device that enables the safe, one-way transfer of data between segmented networks. Data diode design maintains physical and electrical separation of source and destination networks, establishing a non-routable, completely closed one-way data transfer between networks. Data diodes effectively eliminate external points of entry to the sending system, preventing intruders and contagious elements from infiltrating the network. Securing all of a network’s data outflow with data diodes makes it impossible for an insecure or hostile network to pass along malware, access your system, or accidentally make harmful changes.

Data diodes allow companies to send process data in real time to information management systems for use in financial, customer service, and management decisions — without compromising the security of your network. This protects valuable information and network infrastructure from theft, destruction, tampering, and human error, mitigating potential loss of thousands of dollars and countless hours of work.

How Does Data Diode Technology Work?

A “diode” is an electronic component that only allows current to flow in one direction. Similarly, data diode technology lets information flow safely in only one direction, from secure areas to less secure systems, without permitting reverse access. A data diode also creates a physical barrier or “air gap” between the two points. This one-way connection prevents data leakage, eliminates the threat of malware, and fully protects the process control network. Moreover, a single data diode can handle data transfers from multiple servers or devices simultaneously, without bottlenecking.

Proxies in the network interface allow two-way communication to continue seamlessly with each side of the data diode, with a one-way link in between. In addition, this configuration can conceal all source network information by terminating the protocol and resuming it on the destination side of the data diode. This makes it impossible for any external bad actor to ping, deconstruct, or otherwise divine any information about the source network.

Looking to learn more about data diode cybersecurity technology?

Download the Definitive Guide to Data Diode Technology.

Charlie Schick Healthcare Consultant

Why Do A Medical Device Assessment, Part 3: The Device

In the previous two posts in this series, I talked about the reasons cybersecurity analysis on medical devices is necessary and some processes behind device analysis. In the next coupl...
October 21, 2020
Board inspection
Charlie Schick Healthcare Consultant

Why Do A Medical Device Assessment, Part 2: How We Do It

In my last post, I talked a bit about the cybersecurity challenges around medical devices. In this post, I want to tell you a bit about the process of device cybersecurity analysis, wi...
October 15, 2020
Device Assessment
Charlie Schick Healthcare Consultant

Why Do A Medical Device Assessment, Part 1: “It’s Not a Good Situation”

Relevant to this series, Owl’s Device Inspection and Analysis Lab focuses on security analysis of all sorts of devices, ranging from laptops, servers, and mobile devices; to securing op...
October 7, 2020