T44 – Owl Computing Technologies

Data Diodes Implement DHS Strategies for Industrial Control System Cybersecurity

Dennis Lanahan
Director of Worldwide Channel Partnerships & International Sales
November, 2016
Operations Technology (OT) – ICS and IIoT
Industrial Control Systems (ICS), Industrial Internet of Things (IIoT)

OT Network

- 42 volts
- 3 gallons per minute
- Unit 12 offline
- 3 PSI
- 3 cm deep
- 12 microns
- 57 units failed
- 875° F
- 25 lbs

Information Creators

IT Network

- End User
- End User
- End User

Information Consumers

Security Boundary
Remote Access of Data – Is it Secure?

But is it secure?

End Users

OT Network

Remote Monitoring
With Remote Access

Security Boundary
Cyber Threats Against Industrial Controls

- Execution of Malware: 38%
- Unpatched Systems: 29%
- Open Connections: 17%
- Perimeter Breaches: 9%
- Compromised Credentials: 4%
- Exploit Back doors: 2%
- Miscellaneous exploits: 2%
1. Application Whitelisting
2. Configuration/Patch Management
3. Reduce Attack Surface
4. Defendable Environment
5. Manage Authentication
6. Implement Secure Remote Access
7. Monitor & Respond

These strategies could have *prevented 98%* of attacks in 2014 and 2015
• **Application Whitelisting:** Only allow pre-designated applications to run

• **Configuration and Patch Management:** Safe import of trusted patches

• **Reduce Attack Surface Area:** Isolate industrial control system (ICS) networks
 - lock down unused services and ports
 - use a *data diode* to provide network segmentation
 - if bidirectional communication is needed use a single port over a restricted path.

• **Build a Defendable Environment:** Use optical separation ("data diode") to:
 - segment networks
 - restrict host-to-host paths
 - prevent and contain the spread of infection

• **Implement Secure Remote Access:** Remove back doors and modem access
 - implement monitoring only with access enforced by *data diodes*
 - do not rely on "read only" software configurations
 - don't allow persistent remote connections
1. Eliminate connections that aren’t necessary

- Turn off unused services
- Lock down unused ports
- Eliminate modem connections
- Consolidate access points
2. Convert data paths to:
 • One-way in
 • One-way out

Analogy: Physical airport security paths
3. Any remaining two-way connections for external command and control, requires risk assessment

 • DHS recommendation:
 – “if bidirectional communication is needed use a single port over a restricted path”
 – Transient connections (NERC-CIP terminology)
 – Short term, single purpose connection – only connected while in-use
 – VPN, physical Ethernet switch, restricted firewalls, etc.
 – Owl data diode Bi-Lateral solution (More about this later)
Implementing DHS Guidance

#1 One-Way Communications Path out of the Plant
- **Build a Defendable Environment**: Segment networks and restrict host-to-host paths to prevent and contain the spread of infection
- **Reduce Attack Surface Area**: Use a *data diode* to provide network segmentation
- **Implement Secure Remote Access**: Implement monitoring only solution with access enforced by *data diodes*

#2 One-Way Communications Path into the Plant
- **Configuration/Patch Management**: Provide secure configuration/patch management program centered on safe importation of trusted patch updates
Two-Way Communications Path with the Plant

- **Reduce Attack Surface Area**: If bidirectional communication is needed use a single port over a restricted path
- Bi-Lateral data diode solution

By-pass alternative

- Permanent infrastructure used for temporary connections
 - Ethernet on/off switch, dedicated patch cable
Change the Paradigm – Monitoring without Access

OT Network

- 42 volts
- 3 gallons per minute
- Unit 12 offline
- 3 PSI
- 3 cm deep
- Industrial “Things”
- 875° F
- 25 lbs
- 12 microns
- 57 units failed

But is it secure?

Remote Monitoring

Without Remote Access

Security Boundary

End Users

End Users
Effectiveness of Cybersecurity Technologies

- vFirewall
- vFirewall in Appliance
- Firewall
- Orchestration
- Security Virtualizer
- VLAN/ACL
- ACL (Access Control List)
- Data Diode
- Air Gap
• EXCELLENT BUSINESS CONTINUITY
• LIMITED CYBERSECURITY

File Server Historian OPC Server

DMZ

End Users

Convergence of OT and IT

OT Network

IT/Corp Network
Air Gap Network Segmentation

- EXCELLENT CYBERSECURITY
- LIMITED OR NO BUSINESS CONTINUITY

OT Network
- File Server
- Historian
- OPC Server

Air gap

IT/Corp Network
- End Users

EXCELLENT CYBERSECURITY
LIMITED OR NO BUSINESS CONTINUITY
Data Diode Network Security

- EXCELLENT CYBERSECURITY
- ENABLES BUSINESS CONTINUITY

OT Network

Data System 1 Data System 2 Data System 3

Data Diode

IT/Corp Network

End Users

Data System 1 Data System 2 Data System 3
What is a Data Diode?

- Hardware based cybersecurity *designed* to be one-way
- Impervious to software changes or attacks (hardware cannot change)
- Defends the perimeter of the source network (prevents all external attacks)
- Transfers data across network security boundaries (without creating attack vector)
How One-Way Works in a Two-Way World

Existing

OT Network

IT Network

One-way Transfer Established

OT Network

IT Network

Secure One-way Transfer

IP Proxy

Send Only

Rcv Only

IP Proxy
One-Way out & One-Way in

#1 DHS Recommendation One-way Out

OT Network → Secure One-way Transfer → IT Network

- IP Proxy
- Send Only
- Rcv Only

Data Content Filter with Antivirus
Data Content Inspection with Hash Code Validation
Whitelist File Types and File Names

#2 DHS Recommendation One-way In

OT Network ← Secure One-way Transfer ← IT Network

- IP Proxy
- Rcv Only
- Send Only

IP Proxy

DHS Strategy #3: Reduce Your Attack Surface Area -
“If *Bidirectional communication is necessary*, then use a single open port over a restricted network path.”

Owl Bilateral Communication System (OBCS):
- Single port with restricted path
- Supports TCP/IP applications that *cannot* be one way
- Pair of secure one-way transfers within 1U enclosure
- Non-routable ATM protocol breaks
- TCP/IP proxies that break and join single whitelisted session
Small Enterprise Architecture

OT Network
- File Transfer
- Historian Transfer
- Email Transfer

Data Diode Segmentation
Security Boundary

Replicate Historian, Syslog & other data

IT/Corp Network
- File Transfer
- Historian Transfer
- Email Transfer

End Users

End Users

Supports simple and easy security and established data replication flows
Medium Enterprise Architecture

Meets the needs of any midsize company security and data needs
Large Enterprise Architecture

Supports largest enterprise needs with failover, redundancy and load balancing
Examples of One-Way in, One-Way Out and Bi-Lateral
Industry Use Cases

- **Power Generation, Substations, Transmission and Distribution (T&D)**
 - Gas turbine, nuclear, fossil, hydro plant performance data
 - Historian replication
 - Secure remote monitoring – syslog, alarms, events
 - Compliance reporting

- **Manufacturing and Mining**
 - Secure monitoring of system alarms, events, syslog messages
 - Transfer of files, email, security video

- **Oil and Gas**
 - Transfer of historian data, alarms, events
 - Interfaces: Modbus, OPC

- **Water, Wastewater**
 - Windows HMI replication
 - Historian data

- **Financial and Banking**
 - Data transfer between secure and less secure locations
 - Financial transactions
• **Network Hardware Interfaces**
 - Ethernet, serial, USB, dial up modem

• **Standard Vendor Software Interfaces**
 - Rockwell Factory Talk Historian, Rockwell Asset Center, Rockwell RS-Links
 - OSIsoft PI Historian

• **Network application interfaces:**
 - Syslog, SNMP, FTP, SFTP
 - Email (SMTP)
 - UDP, multicast, broadcast, unicast (video)
 - TCP/IP

• **Standards Bodies interfaces:**
 - OPC Foundation interfaces: DA, A&E, UA
 - Modbus
OPDS Data Diode Product Line

- OPDS-5D, OPDS-100D
 - Compact, single box solutions
 - Vertical DIN rail mount
 - Operate in Environmental Extremes
 - Market entry and high end solutions

- OPDS-100, OPDS-1000
 - 1U, 19” rackmount
 - IT environments
 - Variable bandwidth licenses
 - Scale from 10 Mbps to 1 Gbps
1. OPDS-100D Replication of data out of the plant
 1. Rockwell FT Historian ME to SE replication
 2. RS Linx and RS View OPC server replication
 3. HMI Screen replication (UDP connection)
 4. File Transfer (TCP/IP connection)

2. OPDS-100 Secure Software Update Service
 1. Secure file transfer into the plant
 2. With Secure SHA hash code validation
1. Threats to the Connected Enterprise demand improved cybersecurity measures

2. US Dept. of Homeland Security provides strategies for protecting ICS:
 • Reduce the overall number of connections into the OT network
 • Convert two-way connections to one-way data diode connections
 • For remaining external command and control requirements:
 • use protected, single purpose, transient connections

3. Existing Owl Use Cases illustrate successful implementation of these DHS recommendations for protecting ICS
Please take a moment to complete the brief session survey using the ROKEvent mobile app.

- Login to the ROKEvents mobile app with your username and password (set up when registering for the 2016 Automation Fair® Event)
- Locate the session in “Schedule” or “My Event”
- Click on the survey icon in the lower right corner in the session details

We want to hear from you and value your opinion!

Like what you heard? Need more information? Let us know in the survey and we will contact you!